<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

1 took him around with me. Change the voice "Did you like the story, Meenu?" Raghu asked. Change into Indirect Speech I. ti is achievable. Rewrite as negative Dora had never received such a gift. Rewrite in Present Perfect tense The dog sprag — the table. Use suitable preposition in the blank space Cricket is more popular than any other game in India. Change into comparative degree Akshardmam is the most beautiful building in Delhi. Change into comparative degree Akshardmam is the most beautiful building in Delhi. Change into superlative degree Akshardmam is the most beautiful building in Delhi Change into superlative degree Akshardmam is the most beautiful building in Delhi Change into comparative degree Akshardmam is the most beautiful building in Delhi Change into superlative degree Man does his work with diffgence. Change into luture perfect Wa reached the station. The train had left. Join using a subordinate clause Many of them are struggling in many places. Use Past perfect continuous Madhu is _ ______ model and ______ artist. Use suitable articles in blanks I. Industrial wastes ---______ Monday. Use suitable prepositions in blanks Netwananda was one of the most opopular Indian saints. Change into positive degree Be has been living here ---_______ 1922. since/for/from I. prefer coffee ---_______ May I go to wash my hands."? rewrite in indirect speech Q. Write the correct sequence of sentence: I. appear in examinations We had ne held on all India basis I. ji was time to go yet Q. and ran downstiants to see Rahu jumped out of bed Mau in adownstiants to see Rahu jumped out of bed Mau is inte to go ter ¹ Unit Test. Q. Pervise: (for Ist Unit Test.) Q. Bervise: (for Ist Unit Test.) Q. The Portrait of a Lady by Khushwant Singh

b) A Photog	raph by Shirley '	Toulson		
7. Practice	:			
c) Notice W	riting			
d) Compreh	encion Passage			
) Integrated				
	i Grammar			
ote: Holida	ays Homework	should be done	in English Regis	ter/ Notebook
THS				
	Mark the correct alt	ernative in each of the j	following:	A Statistic particular a statistic
	1. For any set A,	(A')' is equal to		
	(a) A' 2 Let A and B be	(b) A	(c) ϕ	(d) none of these.
	(a) $A \cap B$	(b) $A' \cap B$	(c) $A \cap B'$	(d) none of these.
SETS			(-)	1.49
3. The num (a) <i>n</i>	ber of subsets of a so (b) $2'' - 1$	et containing n elen (c) n ²	(d) 2^n	
4. For any t	wo sets A and B , A (b) B	$ (A \cup B) = (c) \phi $	(d) none	of these.
5. If $A = \{1, (a), 4 \in A\}$	3, 5, B) and $B = \{2, 4\}$ (b) $\{4\} \subset A$	$A \qquad (c) B \subset A$	4 (d) none	of these.
6. The sym	metric difference of $B) \cap (B - A)$	<i>A</i> and <i>B</i> is (b) (<i>A</i> -	$B) \cup (B - A)$	
(c) $(A \cup$ 7 The sym	$(B) - (A \cap B)$ metric difference of	(d) $\{(A = \{1, 2, 3\} \text{ and } B\}$	$(B) - A = [(A \cup B) - (A \cup B)]$ = [3, 4, 5] is	- B)
(a) [1, 2]	(b) $\{1, 2, $ two sets A and B, (A	4, 5} (c) $\{4, 3\}$ (c) $\{4, 3\}$ (c) $\{4, 3\}$	(d) (2, 5	, 1, 4, 3)
(a) (A -	$B) \cup A$	(b) (B - (d) (A	$(A) \cup B \cup (A \cap B).$	The second second
9. Which o	f the following state P_{1}^{\prime}	ement is false : (b) A -	$-B = A - (A \cap B)$	
(a) $A - 1$ (c) $A - 1$	B = A - B'	(d) A	$-B = (A \cup B) - B.$	
10. For any(a) A ∩	three sets A, B and $(B - C) = (A \cap B) - C$	$(A \cap C)$ (b) A	$(B - C) = (A \cap B) - (A \cup B) - (A \cup$	$C (A \cup C).$
(c) $A \cup$ 11. Let $A = \{$	$(B - C) = (A \cup B) \cap$ $[x : x \in R, x \ge 4] \text{ and}$	$A \cup C$ (d) A $A = \{x \in R : x < 5\}$	Then, $A \cap B =$	5)
(a) (4, 5	b) (b) (4, 5) the universal set co	5) (c) (4 ontaining 700 elem	nents. If A, B are sub-s	sets of U such that
n(A) = 2 (a) 400	200, $n(B) = 300$ and (b) 600	$(n (A \cap B) = 100.1$ (c) 30	(d) n	one of these. $(1, 2) = 25$ Then
13. Let A a $n(A \cap B)$	and <i>B</i> be two sets 3) is equal to	s such that $n(A)$ =	= 16, n (B) = 14, n (A)	(B) = 20. Here,
(a) 30	(b) 50	(c) 5 ne number of prop	(d) r er subsets of A is	ione of these
14. If $A = 1$ (a) 120	(b) 30	(c) 3	1 (d) 1	32
15. In set-b	uilder method the (b) Φ	(c)	$x: x \neq x \qquad (d)$	x:x = x
16. If A and	B are two disjoint	t sets, then $n (A \cup (b))$	B) is equal to $n(A) + n(B) - n(A \cap$	B)
(a) n (A (c) n (A	$(A) + n (B) + n (A \cap$	B) (d)	<i>n</i> (<i>A</i>) <i>n</i> (<i>B</i>) (e)	n(A) - n(B)
17. For two (a) B (sets $A \cup B = A$ i A (b) A	$\subseteq B \qquad (c)$	$A \neq B$ (d)	A = B
18. If A an	d B are two sets	such that $n(A)$	= 70, n(B) = 60, n	$(A \cup B) = 110$, then
$n(A \cap I)$	5) is equal to		10 (d) 20

00										al to	7				
9. If (a 0. If (, 1. I t (,	A and $A = \{x \\ A =$	B = ar $B = B$ $y = 20%$ $C = ar$ $C = ar$ $B = ar$	e two g (s a mul (o of the and bus (3, then	tiple b) <i>E</i> tiple b) <i>A</i> pop s. Th b) 4	of 3} of 3} $A \cap \overline{B}$ pulation en, poisson	then and, on tra erson	$A \cap$ $B = \{$. wels s trav	$(A \cap B)$ (c) Φ (c) \overline{A}	b^{c} is e a mu b \overline{B} 50% by ca	equal to ltiple o travel: ar or bu	(d) (f 5}, t ¹ (d) (d) (d) (d) (d)	$A^{c} \cap E$ hen A $\overline{A \cap B}$ us and 70% B = 0	3 ^c - B is 1 10% P	travel:	5
23. <i>A</i> 224. 225.	a) <i>A</i> ⊂ An inv trinks: trinks and tea and tea and and tea and and and and and and and and and an	<i>B</i> estig milk milk a; 12 s y. Th nite s t is 4 the v 6 ass o more cs 30	ator inf ator inf coffee student en the r ets hav more alues o f 175 st e subjec ; Mathe vsics an	 (b) I tervii and and and s tak and (b) e m at than (b) (b) (b) (c) 	$B \subset A$ ewed tea. 1 tea; 2 ce mil ber o 20 and <i>n</i> the to and <i>n</i> 6, 3 outs the fathe ics an nemis	100 The in 0 stud k only f stud elem otal n are : e follo matic nd Ch try 18	stude vesti dents ents ents. umbo s 100 nemis 3. Ho	(c) for the second seco	deter eport nilk a s take d not umbe emen 4 hows s 70; Phy y stue	r of ele ts in po s the nu Chemi sics ar dents h	the period (10 str fee; 25 only ny of (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	and ents stude and 8 three 30 s in the set of th 7, 4 r of stu 0; Mat emistr (fered	take ents ta stude drink e pow he sec (e) udent thema ty 23; Math	all three ake milents takes is ver set of cond second second) 3, 7 atics ar ; Mathemati	e k e of et. g d e- cs
	matics	2. Phy 2													
	matics alone (a) 35	s, Phy ?		(b)	48			(c) 60			(d)	22	(e)	30	-
	matics alone (a) 35	s, rny ?		(b)	48			(c) 60			(d)	22	(e)	30 ISWEI	75
1.	(b)	2.	(c)	(b) 3.	48 (d)	4.	(a)	(c) 60 5.	(d)	6.	(d) (b)	22 7.	(e) AN (b)	30 ISWEI 8.	RS (c)
1. 9.	matics alone (a) 35 (b) (c) (a)	2. 10.	(c) (a), (b)	(b) , (c) 18	48 (d)	4.	(a) (c)	(c) 60 5. 12.	(d) (c)	6. 13.	(d) (b) (c)	22 7. 14.	(e) AN (b) (c)	30 ISWEI 8. 15.	RS (c) (c)
1. 9. 16. 24.	matics alone (a) 35 (b) (c) (a) (c)	2. 10. 17. 25.	(c) (a), (b) (a) (c)	(b) (c) 18.	48 (d) (d)	4. 11. 19.	(a) (c) (d)	(c) 60 5. 12. 20.	(d) (c) (b)	6. 13. 21.	(d) (b) (c) (c)	22 7. 14. 22.	(e) AN (b) (c) (b)	30 ISWEI 8. 15. 23.	RS (c) (c) (b)

VAVAVA

$\langle A \rangle \langle A$ OMPUTER SCIENCE

CLASS XI - A COMPUTER SCIENCE HOLIDAYS HOMEWORK

Digital India is a campaign launched by the Government of India in order to ensure the Government's services are made available to citizens electronically by improved online infrastructure and by increasing Internet connectivity or by making the country digitally empowered in the field of technology.

To promote knowledge and awareness amongst students following topics have been shortlisted for the purpose of exploration by Digital Students.

Complete the below mentioned activity assigned according to the first alphabet of your name

Starting Letter of Name	Торіс
A-B	PowerPoint Presentation or movie on
	Artificial Intelligence
C-M	PowerPoint Presentation or movie
	Top IT Companies
P-S	PowerPoint Presentation or movie
	Mobile Operating Systems, Processors and
	Browsers
T-Y	Model on
	Types of Network(LAN, PAN, MAN, WAN)

NOTE: Presentation / Movie can be designed using any software.

Page **5** of **25**

CLASS XI - B COMPUTER SCIENCE HOLIDAYS HOMEWORK

Digital India is a campaign launched by the Government of India in order to ensure the Government's services are made available to citizens electronically by improved online infrastructure and by increasing Internet connectivity or by making the country digitally empowered in the field of technology.

To promote knowledge and awareness amongst students following topics have been shortlisted for the purpose of exploration by Digital Students.

Complete the below mentioned activity assigned according to the first alphabet of your name

Starting Letter of Name	Торіс
A-H	PowerPoint Presentation or movie on
	Artificial Intelligence
I-N	PowerPoint Presentation or movie
	Top IT Companies
O-R	PowerPoint Presentation or movie
	Mobile Operating Systems, Processors and
	Browsers
S-Y	Model on
	Types of Network(LAN, PAN, MAN, WAN)

NOTE: Presentation / Movie can be designed using any software.

Page 6 of 25

CHEMISTRY

Some Basic Concepts of Chemistry

Assignment – 1

Q-1) What mass of sodium chloride would be decomposed by 9.8g of sulphuric acid if 12g of sodium bisulphate and 2.75g of hydrogen chloride were prepared in a reaction assuming law of conservation of mass is true?

Q-2) Carbon combines with hydrogen to form three compounds A,Band C. The percentage of hydrogen in A,B and C are 25,14.3 and 7.7 respectively. Which law of chemical combination is illustrated?

Q-3) Boron has two isotopes boron-10 and boron-11whose percentage abundances are 19.6% and 80.4% respectively. What is the average atomic mass of Boron?

Q-4) Calculate the mass of a single atom of Sulphur and a single molecule of CO₂.

Q-5) How many molecules of water and oxygen atoms are present in 0.9 g of water?

Q-6) What is the mass of 3.01×10^{22} molecules of ammonia?

Q-7) How many molecules and atoms of oxygen are present in 5.6 litres of oxygen at STP?

Q-8) 6g of carbon was completely burnt in oxygen . What would be the volume of CO_2

produced at STP and how many molelcules would be present in that gas?

Q-9) 250 cm³ of sulphuric acid solution contain $24.5g H_2SO_4$. If the density of solution is 1.98 g/cm³, determine : a) Molarity b) Molality.

Q-10) Concentrated aqueous Sulphuric acid is 98% H₂SO₄ by mass and has density of

1.84g/cm³. What volume of concentrated acid is required to make 5litres of 0.5 M H₂SO₄?

Q-11) Calculate the mole fraction of Benzene(C_6H_6) which is 30% by mass in CCl₄.

Q-12) It is found that 16.50 g of metal combine with oxygen to form 35.6 g metal oxide.

Calculate the percentage of metal and oxygen in the compound?

Q-13) Moth balls contain 93.71% carbon and 6.29% Hydrogen. If its molecular mass is 128 g/mol, calculate its molecular formula?

Q-14) Calculate the volume of CO_2 at STP evolved by strong heating of 20g calcium carbonate.

Q-15) Chlorophyll, the green colouring matter of plants contain 2.68% of magnesium by mass. Calculate the number of magnesium atomos in 3.00 g of chlorophyll.

Page **8** of **25**

Q-16) 250 cm³ of sulphuric acid solution contain 24.5 g of H₂SO₄ If the density of solution is 1.98 g cm³, determine : i) molarity and ii) molality.
Q-17) A sample of NaNO₃ weighing 0.38 g is placed in a 50 mL volumetric flask . The flask is then filled with water to mark on the neck . What is the molarity of the solution.
Q-18) Calculate the mass of sodium acetate (CH₂COONa) required to make 500 mL of 0.375 M solution. Given that the molar mass of sodium acetate is 82.
Q-19) Calculate the mass percentage of each element present in ethanol.
Q-20) Calculate the mass percentage of each element present in ethanol.
Q-21) The density of 3 molal solution of NaOH is 1.110 g/L. Calculate the molarity the solution.
Q-22) If the elemental composition of butyric acid is 54.2% C, 9.2% H, 36.6% O and its molecular mass is 88u. What will be the molecular formula of compound ?
Q-23) A sample of NaOH weighing 0.38 g is dissolved in water and the solution is made to 50 mL in volumetric flask. What is the molarity of the resulting solution ?
Q-24) Calculate the molarity of pure water.
Q-25) A compound on analysis gave following percentage composition : C = 57.8%, H = 3.6 % and the remainder is oxygen. The vapour density of the compound is 83.Find the molecular formula of the compound.
Q-26) Calculate normality of solution containing 31.5 g hydrated oxalic acid in 1250 mL of solution.

- <section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

$$a = \frac{2\left(\frac{S_2}{t_2} - \frac{S_1}{t_1}\right)}{t_1 + t_2}$$

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- 3. Test the accuracy of the relation λ = h/mv where λ is the wavelength, h is the plank's constant, m is the mass and v is the velocity. [correct]
 4. Test the accuracy of the relation V = (πpr⁴) /(8ηl), where V is the volume of the liquid flowing out of the capillary tube per unit time, η is the coefficient of viscosity, p is the pressure difference across the two ends of the capillary tube, r is the radius of the capillary tube and length of the capillary tube.[correct]
 5. Time period of an oscillating drop of radius r, density p and surface tension S is t = k v(pr³)/s) check the correctness of the relation, where k is dimensionless. [correct]
 6. Find the value of 60 joule/minute on a system which has 100g, 100 cm, and 1 min as the fundamental units. [2.16×10°]
 7. If the density of the mercury is 13.6 g cm³, convert its value into kg/m³ using dimensional analysis. [13.6×10³]
 8. Obtain by the method of dimensional analysis an expression for the surface tension of the liquid rising in the capillary tube. Assume that the surface tension depends on mass m of the liquid, pressure P of the liquid and radius r of the capillary tube. The constant K = ½. [S=Pr/2]
 9. Assuming that the escape velocity for a planet depends upon gravitational constant G, radius R of the planet and also its density p, derive formula for the escape velocity from dimensional considerations. [v_n = KRV(G p)]
 10. If the velocity of the sound in a gas depends upon its elasticity(E) and density(p), derive the relation for the velocity of the sound in a medium by the method of dimension.[v = kV(E/p)]
 11. If x = a + bt + ct² where x is in meters and t is in seconds then what are the unites of a, b and c?

12. Using principle of homogeneity of dimensions, check the correctness of the equation for height of liquid in a capillary h = 2od/(r g cos0) Where of is surface tension, d is density, r is the radius and g is acceleration due to gravity. [incorrect]
13. If momentum (P), area (A) and time (T) are assumed to be the fundamental quantities, then energy has a dimensional formula. [PT²A³]
14. If pressure P = (a - t²)/bx, where x is the distance and t is time. What is the dimension of a/b. [MT²]
15. In a system of units, if force (F), acceleration (A) and time (T) are taken as fundamental unites, then what is the dimensional formula of energy? [FAT²]
16. A force F=at + bt², where t is the time. What are the dimensions of a and b? [MIT³ and MLT⁴]
17. If energy (E), velocity (V) and Time (T) are taken as fundamental unites, then what is the dimensional formula of surface tension? [EV²T²]
(Error Analysis)
1. Add 17.35 g, 25.6 g and 8.498 g.
2. Add 6.25×103 cm and 4.52×102 cm.
3. Subtract 36.8 km from 97 km.
4. Multiply 3.8 and 0.125 with due regard to significant figures.
(B.72 m2, 0.0855 m3]
6. Calculate the following with due regard for significant figures (1.53×0.9995)' 1.592. [0.61]
7. A capacitor of capacitance C = 2.0±0.1 µF is charged to a voltage V = 20 ± 0.2 volt. What will be the charge on the capacitor? Use Q = CV. [40 ± 2.4 × 10-6 coulomb]
8. Find the relative error in Z if Z = A4B1/3/CD3/2.

9. Calculate the maximum possible error in Y = 4MgL/(πD21) where mass, M = 1000 g; original length L = 200.0 cm; diameter D = 0.075 cm; extension 1=0.325 cm. [3.03%]
10. Using same vernier calipers, the length of a cylinder in different measurements to be 2.36 cm, 2.27 cm, 2.26 cm, 2.28 cm, 2.31 cm, 2.28 cm and 2.29 cm. Calculate the percentage error. [±0.9%]
11. The density of a material of a cylindrical rod was determined by the formula d = m/πc21. The percentage error in m, r and 1 are 2%, 1.5%, and 0.8% respectively. Calculate the maximum possible percentage error in determination density. [5.8%]
12. Given : specific resistance, ρ = πr2R/l, where r is the radius of the wire, 1 is the length of the wire and R is the resistance of the wire. Calculate the percentage error in p, if R-(64 ± 2) Ω; 1 = (156.0 + 0.1) cm; r = (0.26 + 0.02) cm, [18.6%]
13. The heat dissipated in a resistance can be obtained by the measurement of the resistance, current and time. If maximum errors in the measurement of these quantities are 2%, 1%, and 1% respectively, then what is the maximum error in the measurement of dissipated heat, Q = 12Rt / 42 cal? [5%]
14. The length and breadth of a rectangle are 25.0 cm and 16.7 cm respectively. These have been measured to an accuracy of 0.1 cm. Determine the percentage error in the area of the rectangle. [1.0%]
15. A rectangular plate has a length of (21.3 ± 0.2) cm and a width of (9.80 ± 0.10) cm. Calculate the area of the plate and also the percentage error. [(209 ± 4) cm2, ≈ 2%]
16. An experiment measures quantities a, b, c, and X is calculated from the formula X= ab2/c3. The percentage error in a, b and c are ±1%, ±3% and 2% respectively. What is the percentage error in X? [±13%]
17. A physical quantity is represented by : X = Ma Lb Tc. If the percentage errors in the measurement of M, L and T are c%, β%, γ% respectively, then what is the total percentage error in the measure of measurement in [1, b, 1, an

ACCOUNTS

Attempt the following Questions:

1. Show the effect of the following transactions on the accounting equation and

prepare balance sheet of the last equation:

i. Rakesh started business with cash 2,30,000, goods 1,00,000, and building 2,00,000.

- ii. He purchased goods for cash 50,000
- iii. He sold goods costing 20,000 for 35,000
- iv. He purchased goods from Rahul for 55,000
- v. He sold goods to Varun costing 52,000 for 60,000
- vi. He paid cash to Rahul in full settlement 53,000
- vii. Paid salary of 2,000
- viii. Received cash from Varun in full settlement 59,000
- ix. Rent outstanding 3,000
- x. Prepaid insurance 2,000
- xi. Commission received by him 13,000
- xii. amount withdrawn by him for personal use 20,000
- xiii. depreciation charge on building 10,000
- xiv. fresh capital introduced 50,000
- 2. Show the effect of the following transactions on the accounting equation
- i. started business with cash 50,000 and goods 20,000
- ii. bought goods for cash 15,000 and on credit 10,000
- iii. goods costing 24,000 sold at a profit of 33.5%, half payment received in cash.
- iv. Purchased furniture for office use 6,000 and household dues 4,000
- 3. Prepare accounting equation from the following:
- i. Started business with cash 75,000 and goods 25,000
- ii. Paid for rent 2,000
- iii. Bought goods for cash 30,000 and on credit 44,000
- iv. Goods costing 50,000 sold at a profit 25% out of which 27,500 received in cash

v. Purchased a motorcycle for personal use 20,000

- 4. Prepare accounting equation from the following and prepare the balance sheet:

 i. Raghu started business with cash 1,50,000
 ii. Bought goods for 80,000 and on credit for 40,000
 iii. Goods costing 75,000 sold for 12,000 on credit
 v. Paid for rent 2,000 and salary 4,000
 v. Goods costing 20,000 sold for 18,000 or credit
 v. Paid for rent 2,000 and salary 4,000
 v. Goods costing 20,000 sold for 18,000 or credit
 v. Paid for rent 2,000 and salary 4,000
 v. Goods costing 20,000 sold for 18,000 or credit
 v. Paid for rent 2,000 and the expenses to earn this revenue is 15,000. Calculate its income.
 a. Striftly explain Ind-AS
 7. During the Accounting Period 2018 2019, Udit had total sales of 5,80,000, out of which cash sales were of 3,70,000. The total expenses for the year were 2,80,000 out of which cash sales were of 3,70,000. The total expenses for the year were 2,80,000 out of which cash sales were of 3,70,000. The total expenses for the year were 2,80,000 out of which cash sales were of 3,70,000. The total expenses for the year were 2,80,000 out of which cash sales were of 3,70,000. The total expenses for the year were 2,80,000 out of which 7,000 are still outstanding. Find out Udit's income for 2018 2019 as per:
 a. Cash basis of accounting
 b. Accrual basis of accounting
 a. Outer's Equity in the beginning 2,00,000.
 b. Spenses during the period 1,20,000
 c. Bequity of Creditors at the end 60,000
 d. Spenses during the same period are 70,000
 d. Mukul commenced business on 1 st Apr' 18 with a capital of 90,000 and loan of 30,000. He introduced additional capital of 15,000 and withdrew 7,000 for his perature adrived in total Assets of Mukul as on 31 st Mar' 19.
 Low would you deal with the following items on accounting equation:
 a. Outstanding Salary
 b. Insurance Premium paid in advance
 c. Rent Received in ad

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Divya has allowed the firm to use her name as she enjoys good reputation, but she does not either contribute capital or take part in management.

Identify the four types of partners highlighted above by quoting the lines from the above.

15. You are a student of class xii having full knowledge of different forms of business organization. Mr. Rohan wants to set upa business. He needs your help in choosing a business organization. He has two main expectations from the business organization:

- Ease of formation and closure
- Secrecy

16. Compare all the forms of business organization on the following basis;

- Formation
- Number of members
- Liability of members
- Control and management
- Secrecy

• Continuity

17. Siddhant visited his native village during his vacations and found that the moneylender in the village was exploting the farmers. So he decided to help the farmers. He met all the farmers and told them about the various options for raising funds. He was able to convince the farmers to pool their own resources and form an organization. The purpose of opening such organization was not to make profits but to provide help to members.

- ➤ Name the form of organization opened by farmers.
- ➤ Who can become the members of the above identified organization?
- What is the motive of this kind of organizations?
- > What is the minimum number of members required to form such organization?
- Under which act, these organizations are governed?
- ▶ Is registration compulsory for these organizations?

PART-II

Prepare a pictorial A4 size sheet on 'emerging modes of business or e-business.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

ASSESSMENT

ALLOCATION OF MARKS (20)

The marks will be allocated under the following heads:

Project synopsis	2 Marks
Data/Statistical	3 Marks
analysis/Map work	
Visual/overall presentation	5 Marks
Analysis/explanation and	5 Marks
interpretation	
Bibliography	1 Marks
Viva	4 Marks

TOTAL

20 MARKS

THEMES IN WORLD HISTORY

Topics:

- Evolutionary aspect of human beings. •
- The Legacy of Mesopotamia civilization with special reference town planning, Script and Writing system, Mathematics, Astronomy, Science and their calendar.
- The Roman Empire with special reference to Architecture, government and society.
- The Islamic Land with special focus on religion, politics and their contribution to the world.
- Role of Genghis Khan in establishing nomadic empire.
- Europe from 13th to 16th century. •
- European voyages and explorations.
- The great American civilizations- Incas, Aztecs and Mayan civilizations.

- Case study on China and Japan. (Path to modernization)
- Anthropological Research based on Darwin's Theory
- Critique of the industrialization in Britain •
- Relations and impacts of past crusades
- Making and unmaking of Mesopotamia

- <list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>
 Paradigms of Greco-Roman civilization
 Aspirations of women in Renaissance period
 An Exploratory study into Humanism
 Piecing together the past of Genghis Khan
 An in depth study into "now and then" paradigm of Christianity
 An exploratory study into the realism and the transmission of Humanistic ideas
 Scientific Revolution and the origins of modern science
 An exploratory study into the making of America
 Myriad Realms of Slavery in ancient, medieval and modern world
 Learning about global Suffsm
 History of aborigines America / Australia
 Dire project work to be done in group of five.
 Each student to have a separate project file.
 Use colorful sheets for the work and spiral binding.
 Each group has to prepare Power point presentation related to their topic.
 The project must be totally research and survey based.
 The project must be neat and well presented and must be completely handwritten.
 The project should be totally research and survey based.
 The project should be doe on inter leaf A-4 sized sheets.
 Students have to preserve the initial draft of the project as well as any research papers that they may have used. (To be attached at the end of the project).
 Revise and write all the assignments of the chapters allocated to the Groups.
 Prepare Power Point Presentation of the chapters allocated to the Groups.
 Revise and practice the may work done in the class.

Section 1: History Project (Title of the Project) Name: School: Year: Roll no.:	Section 2: Certificate of authenticity (To be pasted)	Section 3: Index
Year: Roll no.:		
	Teacher's Signature	
Section 4: Acknowledgement (Acknowledging the institution, the place visited and the person who has helped.)	Section 5: Preface: Problem Statement/Objective of the project	Section 6: Introduction: (Objective/learning outcomes of the project. Introduce the selected topic by giving some historical background)
Section 7: Summary of the topic Activities done during the project	Section 8: Observations and Analysis	Section 9: Conclusion Summarized suggestions of findings/Future scope of study
Section 10: Appendix Person consulted, Bibliography, Books, Websites, Films/ Television referred.	Section 11: Values and Life skills learned through the project	Section 12: Draft Thank you.
Note :collect the information for search engines for quick respondence.	or research from the following websi nse – Google, Bing, Yahoo, Ask.com	tes-edu, gov and org. U m, Aol.com, Baidu, Du
• Read all the chapters an book itself.	id underline the difficult words and w	rite there meanings in

- <list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>